Claudia Köhler's Lab

Genomic Imprinting

Genomic imprinting in plants

Genomic imprinting is an epigenetic phenomenon rendering genes to be specifically expressed depending on their parent-of-origin. In plants, imprinted genes are mainly confined to the endosperm and it has been hypothesized that imprinted genes regulate the nutrient transfer from the mother to the offspring. Our research focuses on elucidating the functional role of imprinted genes for endosperm development and for their specific role in establishing hybridization barriers between species. We furthermore elucidate the underlying epigenetic mechanisms establishing parent-of-origin-specific gene expression.

Related publications:

Moreno-Romero J, Santos-Gonzàlez J, Hennig L, Köhler C. (2017) Applying the INTACT method to purify endosperm nuclei and to generate parental-specific epigenome profiles. Nature Protocols, 12:238-254. (PubMed)

Hatorangan MR, Laenen B, Steige K, Slotte T, Köhler C. (2016) Rapid Evolution of Genomic Imprinting in Two Species of the Brassicaceae. Plant Cell. 28:1815-27. (PubMed)

Moreno-Romero J, Jiang H, Santos-González J, Köhler C (2016) Parental epigenetic asymmetry of PRC2-mediated histone modifications in the Arabidopsis endosperm. EMBO J. e201593534. (PubMed)

Wolff P, Jiang H, Wang G, Santos-Gonzàlez J, Köhler C (2015) Paternally expressed imprinted genes establish postzygotic hybridization barriers in Arabidopsis thaliana. eLife1 0.7554 (PubMed)

Kradolfer D, Wolff P, Jiang H, Siretskiy A, Köhler C. (2013) An imprinted gene underlies postzygotic reproductive isolation in Arabidopsis thaliana. Dev Cell. 26: 525-35. (PubMed)

Köhler C, Wolff P, Spillane C (2012) Epigenetic mechanisms underlying genomic imprinting in plants. Annu Rev Plant Biol., 63: 331-352. (PubMed )

McKeown PC, Laouielle-Duprat S, Prins P, Wolff P, Schmid MW, Donoghue MT, Fort A, Duszynska D, Comte A, Lao NT, Wennblom TJ, Smant G, Kohler C, Grossniklaus U, Spillane C. (2011) Identification of imprinted genes subject to parent-of-origin specific expression in Arabidopsis thaliana seeds. BMC Plant. Biol.11:113. (PubMed )

Wolff P, Weinhofer I, Seguin J, Roszak P, Beisel C, Donoghue MT, Spillane C, Nordborg M, Rehmsmeier M, Köhler C (2011) High-Resolution Analysis of Parent-of-Origin Allelic Expression in the Arabidopsis Endosperm. PLoS Genet. 6:e102126 (PubMed)

Köhler C, Kradolfer D. (2011) Epigenetic mechanisms in the endosperm and their consequences for the evolution of flowering plants. Biochim Biophys Acta. 1809: 438-43. (PubMed )
Villar, B.R., Erilova, A., Makarevich, G., Trösch, R., Köhler, C. (2009) Control of PHERES1 imprinting in Arabidopsis by direct tandem repeats. Mol. Plant, 2:654-660. (PubMed)

Makarevich, G., Villar, C.B.R., Erilova, A., Köhler, C. (2008) Mechanism of PHERES1 imprinting in Arabidopsis. J. Cell Science, 121: 906-912. (PubMed)

Köhler, C, Makarevich, G. (2006) Epigenetic mechanisms governing seed development in plants. EMBO Rep. 7:1223-1227. (Medline)

Makarevich, G., Leroy, O., Akinci, U., Schubert, D., Clarenz, O., Goodrich, J., Grossniklaus, U., Köhler, C. (2006) Different Polycomb group complexes regulate common target genes in Arabidopsis. EMBO Rep. 7:947-952. (Medline)

Köhler, C., Page, D.R., Gagliardini, V., Grossniklaus, U. (2005) The Arabidopsis MEDEA PcG protein controls expression of PHERES1 by parental imprinting. Nature Gen., 37, 28-30. (Medline)

Köhler, C., Hennig, L., Spillane, C., Pien, S., Gruissem, W., Grossniklaus, U. (2003). The Polycomb group protein MEDEA regulates seed development by controlling expression of the MADS-box gene PHERES1. Genes Dev., 17, 1540-1553. (Medline)

Köhler, C., Hennig, L., Bouveret, R., Gheyselinck, J., Grossniklaus, U. Gruissem, W. (2003). AtMSI1 is a component of an Arabidopsis PcG complex and essential for seed development. EMBO J., 22, 4804-4814. (Medline)

Köhler, C., Grossniklaus, U. (2002). Epigenetic inheritance of expression states in plant development: the role of Polycomb group proteins. Curr. Opin. Cell. Biol. 14, 773-779. (Medline)